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Abstract—The present paper is concerned with a thermal shock problem in a transversely isotropic
cylinder containing an annular crack. In analysing this problem, we propose a simple solution
technique for transient thermoelastic problems in transversely isotropic solids. This problem can be
formulated in terms of a triple-series equation by means of the method of successive approximation
as well as the Fourier integral and Bessel series. The triple-series equation is reduced to a simu-
Itaneous algebraic equation by the application of Fourier and Neumann series. The stress intensity
factors at the inner and outer crack tips are derived from the axial displacement. Numerical
calculations of the stress intensity factors which are carried out for graphites and ceramics are
compared with one another. Finally, we propose simple formulations expressing the maximum
stress intensity factors as a function of Biot’s number and crack length.

1. INTRODUCTION

With the advance of material technology, various engineering materials exhibiting ani-
sotropy have been put to practical use. Among these are heat resistant materials. Graphites
and ceramics are very important materials for structures subject to severe thermal environ-
ments such as those in nuclear power plants and space. Some of those materials possess
transverse isotropy which is a kind of anisotropy. If there are cracks in such materials, they
may fracture due to the stress concentration at the crack tip. Therefore, evaluating the
magnitude of stress concentrations in transversely isotropic materials is very important for
determining the safety of a material.

Many papers are written on steady thermoelastic crack problems, while only a few
papers have studied transient thermoelastic crack problems. Noda et al. have investigated
transient thermoelastic crack problems in isotropic infinite solids (Noda and Matsunaga,
1986; Noda et al., 1986, 1988) as well as in transversely isotropic infinite solids (Ashida
and Noda, 1987 ; Noda and Ashida, 1987a, b, 1988). However these problems have received
little practical applications. Nied (1983, 1987), Kokini (1986a,b) and Noda et al. (1989)
have analysed thermal shock problems in edge cracked plates. Nied and Erdogan (1983),
Oliveira and Wu (1987) and Noda et al. (1989, 1990) have researched thermoelastic crack
problems in cylinders subjected to cooling or thermal shock. Since these papers are written
on transient thermal stresses in isotropic plates and cylinders, we cannot find other papers
on transient thermoelastic crack problems in transversely isotropic plates or cylinders.

This paper is concerned with a thermal shock problem in a transversely isotropic
infinite circular cylinder with an annular crack. Temperature gradients are large in thermal
shock problems, which cause large stress gradients. Since some materials are sensitive to
stress gradients, thermal shock problems are important. In the problem of an annular
crack, it is seen that the stress intensity factor at the inner crack tip is larger than that at
the outer crack tip and increases with decreasing inner radius of the annular crack. Once
the growth of an annular crack begins at the inner crack tip, that crack extends to the center
of the cylinder. Therefore, we think that calculating the magnitude of stress intensity factor
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at the inner crack tip is very important. Up to now, no elastic problem in a cylinder with
an annular crack has been studied because it was difficult to derive the stress intensity
factors at the crack tips.

In analysing this subject, we propose a new solution technique for transient thermo-
elastic problems in transversely isotropic solids. This solution technique is formulated in
terms of two thermoelastic displacement potential functions and two displacement potential
functions which are governed by very simple equations.

In the analysis of the temperature field, it is assumed that the presence of a crack
should have no effect on the temperature distribution, because there is no heat transfer in
the axial direction in this problem. The method of successive approximation as well as the
Bessel series and the Fourier integral are used to satisfy the mechanical boundary conditions.
Therefore, this problem can be formulated in terms of a triple-series equation which is
reduced to a simultaneous algebraic equation by means of the Fourier series and the
Neumann series. The stress intensity factors cannot be derived directly from the axial stress,
they must be derived from the axial displacement.

Numerical calculations of the stress intensity factors at both inner and outer crack tips
are carried out for a transversely isotropic graphite, an isotropic graphite, a beryllium oxide
and a zircon, and compared with one another. The stress intensity factors have maximum
values with respect to a time variable. Finally, we propose the simple formulations express-
ing the maximum stress intensity factors as a function of Biot’s number and crack length.
Since fairly accurate stress intensity factors can be derived from these simple formulations,
we think that these simple formulations provide useful engineering data.

2. SOLUTION TECHNIQUE IN TRANSVERSELY ISOTROPIC SOLIDS

The stress—strain relations for axisymmetric problems are expressed by

O = Cr18n~+Cia8pp+ €138 — Bi(T—T)
Cop = Cl28n+C 1189+ Cy38,, — B (T—T)
0.. = Cr36,+C 13809+ €338, — B3(T—To)

G = 2C448,z

(1)

where ¢, and f, are the material constants of a transversely isotropic solid (Nowinski, 1978),
and T— T, is the temperature rise. The strain—displacement relations are defined by

u U tu,

r
€ = U, Egg = 7 s €=U _, &

=, b= @

where the comma denotes partial differentiation with respect to a variable. The equations
of equilibrium for axisymmetric problems which are represented by the displacements are
given by

1 1
Cry {u,,,, + - u,‘, - u,—} +C44ur‘zz -+ (cl 3 + c44)uz.rz = Bl (T— T()),r
r r (3)

1 1
C44{u2,rr+ ;uz,r}+c33uz,zz + (C|3 +C44) {ur.rz"_ ;ur.z} = EB(T_ TO),z-

In order to solve eqns (3), we introduce the potential functions Q and ® which are
related to the displacements as follows:
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u, = Q,r’ u = (kn+®)’,z: (4)

where k is an unknown coefficient. Substituting eqns (4) into eqns (3), we find

AIQ+MQ EL(T To) —

Ci Ci

ERAZTY 0., 5

kC33 1

= T— - A ®— zz1ls 6
A'Q+cn+(1+k)c44 = 6‘13+(1+k)C44[B.3( To)=casds €01 ©
where
2 10
A, =6_7'2+;E'

It is assumed that the coefficient of Q ., of eqn (5) is equal to that of eqn (6):

keys+(1+k)eas kess
i cist(1+k)cy,

=pu. @)

Eliminating k from eqn (7), the following equation can be derived :
criCaapt + (et +2¢13044—C11033) 0+ 3344 = 0. ®

Let u, and g, denote the roots of eqn (8), so k, and k, corresponding to x; and u, are given
by

_Cnli—Cy4

i=1,2). 9
1t eas ( ) )
Substitution of eqn (5) into eqn (6) yields
A®+u,@,, = - ‘”2’3 —Fs —EEL2(T-T,)  (forp = py), (10)
R
A®+p,0,, = kB =By 2 (T=Ty)  (for u = py). (11)

Caq
Now, we introduce a new potential function ¥ as follows:

where d is unknown. In the case of u = u,, substituting egns (12) and (10) into egn (5) in
order, we have

1#23.1

N 2T Hz){d'*'k lk}@ {ﬂ BS}(T"‘TO)- (13)
it

In order to eliminate the term of ® ,, from eqn (13), putting d as follows:

1
s (14)

we obtain
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kzﬂlﬁl 53

AVY+u,¥,, =
I s (kl ky)cas

(T-T,). (15)

While we can obtain the following equation for u = yu, in the same way as the case of
H=H:

A - lﬂZﬁl 53 _
X\P+lu2‘¥.zz (k; 2)044(T TO)’ (16)
where
1
Now, setting anew,
® = 0/d (18)
eqgns (10) and (11) become
AD+p,®,, = kipafi— E’(T—To) (for p = ), (19)
(ki —k3)cqq
. kapi By —Bs
MO+, = — G (T=T) (for = py). (20)

It is clear that not only eqn (15) and eqn (20) but also eqn (16) and eqn (19) are the same.
Therefore, the governing equations obtained in the case of y = u, are the same as those in
the case of 4 = p,.

For the case of u = u,, rewriting as follows:

V=0¢+y, ®=¢,+¢, 2D
eqns (15) and (19) lead to the governing equations of potential functions:
Avpr+d. =E(T—Ty), A2+, = E(T—Ty), (22)

Ay i+uy. =0, Awat+py,.. =0, (23)
where ¢, and ¢, are the particular solutions and

kzﬂlﬁl—ﬁs klﬂzﬁn—ﬁs

= e et =, 24
3 (ky—k3)cas ¢ (k1 —ky)cas (24)
Equations (4) become

= (@1 + @), + W1+, = (ki) +kad2) .+ kW +kaia).. (25)

It is clear that eqns (22) cannot be applied to the case of k, = k, (i.e. k, =k, = 1 and
Hy = iy = po). In this case, the following relationship is derived among the transversely
isotropic material constants:
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ci3t+2c4 = /ciiC3

There may be transversely isotropic materials which exhibit such a characteristic. Therefore,
we must consider other potential functions for the case of k, = k,. Now, the following
potential functions are introduced :

Q=¥+e0+/20,, 26)

where e and f are unknowns. Substituting eqns (26) and (10) into eqn (5) in order, the
following equations are derived :

ci3t+c
A;‘P + ﬂ(}\P.zz + {2auﬂf+ —'Qz,‘_“i} (D,zz

i1

- {_& I‘OBI Ba}(T—TO)‘Ff#OB-l 53 (T"To),z- (27)

n

In order to eliminate the terms of ®,, and T'— T, from eqn (27), putting e and fas follows:

casB C13+Caq
e == 28
Cu(ﬂoﬁ-l"'ﬁs) 4 2upcy (28)
we have
A4 pe¥,, = — (ci3+cad (o —B3) AT—To).. 29)
2140C11Cas
Setting anew,
Q=0 je+y, ¥=0¢, (30)
the governing equations of potential functions are obtained from eqns (10) and (29) :
A +Hueiz = E(T—To), Aidr+pods., = E2(T—To),, 31
Al‘/’+l“'0¢.zz = Oa (32)
where ¢, and ¢, are the particular solutions and
ci13+c¢ -
£ = El_’ £ = __( 134 Caa)(po By B-J)' (33)
(48! 2149€11Cas
Equations (4) become
U, = {1 +j22¢1.+ b2}, +V, = {jidi+j2zd 1+ G2} A+, (34)
where
ji = (6‘13‘*'344)51"31153 o= — (Cn"‘cu)(#ogx—gs)). 35)
‘«'44.3.1 2}‘004451

In the case of isotropic conditions, the coefficients become
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4y . .
ﬂ0=1, ¢1=1“_‘va, €2=0’ Jl=1, .]2=0,

where v is Poisson’s ratio and a is the coefficient of linear thermal expansion. Omitting one
for ¢,, since the governing equations of ¢, and y are the same, the potential functions ¢,
and y correspond to Goodier’s thermoelastic potential function and the first of Boussinesq’s
functions.

3. THERMAL SHOCK IN A TRANSVERSELY ISOTROPIC CYLINDER
WITH AN ANNULAR CRACK

3.1. Temperature field

Let us consider a heat conduction problem for a transversely isotropic infinite circular
cylinder containing an annular crack, as shown in Fig. 1. The infinite cylinder, initially at
the same uniform temperature T, is suddenly subjected to the higher temperature T, on
the outer radius of the cylinder. The temperature T, is constant in the circumferential and
axial directions. Since there is no heat transfer in the axial direction in this problem, it may
be assumed that the presence of a crack should have no effect on the temperature distribution
in this idealized case. Therefore, the temperature distribution varies in the radial direction,
but does not vary in the axial direction.

The governing equation for transient heat conduction is given by

1 T,
T:rr+ ; rr = _" (36)

K,

where ¢ is the time variable and x, is the thermal diffusivity.
The initial and boundary conditions for temperature field are expressed by

T=T, att=0, 37
h
T, =~ /I_(T— T,) onr=a, (38)

where # is the coefficient of heat transfer on the outer radius of the cylinder and 4, is the
coefficient of thermal conductivity in the radial direction.

Fig. 1. Transversely isotropic cylinder with annular crack.
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In this heat conduction problem, the temperature distribution is given by Carslaw and
Jaeger (1967) as follows:

T=To+(T;~To) {1— i TmJO(ﬂmr)}’ (39)

where

_ 2heexp(— K, 1)
To = i (AR Io(Bod) (49

and B, are the roots of the equation:
h
BJ, (Ba)— T Jo(Ba) =0 41)

and where J,(r) is the Bessel function.

3.2. Thermal stresses

Let us consider a transient thermoelastic problem in a transversely isotropic infinite
circular cylinder containing an annular crack.

We assume the following admissible solutions for the potential functions ¢, ¢,, ¥,
and ¥, governed by eqns (22) and (23):

2

b = Ty~ T) {’4 +3 ﬂ;ZTmJo(ﬁmr)} (i=1,2), @

e (T _ ’_Z_iz S p-lF _lgm_z)
i (T, To)[D,<4 2u,_)+m§‘ﬁm EmeO(ﬂmr)exp< n

+L® p‘zﬂplo(p\//;r)COS(pZ)dp] (i=12), (43)

where &, and £, are given by eqns (24), D, E,, and F,, are unknown coefficients, and I,(r)
is the modified Bessel function.

The substitution of eqns (39), (42) and (43) into egns (25), (2) and (1) leads to these
displacements and stresses :

21k, 2 k; B.z
u, = (T,—T,) Y, [~ Diz+ Y EJo(Bnt) exp(— —'f——>
vt i=1 L m= 1 ﬁm\/;, ° ﬁ

+ Lw p~ 'k, Io(py/ 17 sin (p2) dp], (44)

2 D, 2= E,
0, = —(Tb"' TO)H:’; (Clsui-——cnk,-) ["u—: —mgl “_l:"-’o(ﬂmr) €xXp (_ %)

+L Fz’pIO(P\/;ir)COS(PZ)dP:I“(01351_53) {1‘” i Tm-]o(ﬁmr)}]‘, (45)

where the other displacement and stresses are omitted here.
The boundary conditions for the displacement and stresses are given by :
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J o.rdr=0 atz - oo, (46)
0

g’,rzo'zrzo Onr:a’ (47)

0,.=0 onz=0, (48)

u, =0 0<r<ebsr<a), o,.=0(c<r<b) onz=0. (49)

The coefficients can be determined by eqns (46)—(49). In order to solve eqns (47)—(49),
we apply the Fourier integrals of sin (pz) and cos (pz) and the Bessel series of Jy(f,.r). F)
and F, can be determined from eqn (46) and the constant term of the first of eqns (47).
The other coefficients are determined by means of the method of successive approximation.
The (2j)th approximation is a solution that satisfies eqns (47) and the (2j+ 1)th approxi-
mation is a solution that satisfies eqns (48) and (49). We obtain the following equations
from the terms of Jy(B,,r) of eqns (47) :

EY =Y (¥.D¥'+¥.D3'} (=1.2)(=0.12..). (50)

m=1
Equation (48) gives
DY = WDY (j=0,1.2..). 1

Here ¥;,, ¥;, and ¥, are known coefficients but are omitted. Equations (49) reduce to the
following triple-series equation :

[.].o0 = (T, —Ty) Z D, D%&:‘%(ﬁ;ﬁ)

=1

=0 0<r<eb<r<a),

% (j=0,1,2,...),
[0..]:c0 = (T —T,) z [®2D%{n+l+6_/'0le+(1_5j0)Q%{n]J()(er) i
m=1
=0 (c<r<b),
(52)
where
Q,, =TT,+T F +I,F,+T;, QF, =f (T4EY, +TsEZ} dp (53)
0

and where @, and I'; are known coefficients but are omitted here, and J,, is Kronecker’s
delta. In order to solve the triple-series equation, we introduce the following function which
identically satisfies the first of eqns (52) :

1

> @ DB o (Bur) = — X 5 sin (n), (54)

m=1 cfw n=1
where x2*! are unknowns, and

b+c b—c

rr =ri4ri=2r.r,cos0, r.= 5 =Ty (55)

Applying the inverse Hankel transform to eqn (54), D,,, are expressed by
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_}_ Z 2_}+i (m: 1,2,3,.--); (56)
1 wm ]
where
B,
L =2 (13m+h2/22)-f2(5ma) *
and where

Zom = Jn-1 (.Bmyc) Jaoi (erw) —Jn+ t (ﬁmrc) Jn+ 1 (ﬁmrw)- (58)

Substituting eqns (56) into the second of eqns (52) and applying the Neumann series,

Jo (\/C%'*‘C% —2{,{;cosb) = Jo(Cl)Jo(Cz)‘i‘zki‘ Je € 1)J (L) cos (k6) (59

we get the following infinite system of simultaneous algebraic equations which determines
the unknowns:

Z x+! }:1 (—l;lL mnlim = = Z‘ 00Qim +(1-0,0)Q%1 2y, (k=1,2,3,..). (60)

3.3. Stress intensity factors
We will define the stress intensity factors from the axial displacement. The stress
intensity factor at the inner crack tip Kj; and that at the outer crack tip X, are given by

n . [ﬁz]z=o \/7; : [u] =
Kn="\ﬁ‘/\'hm , Ko=—_[5 A+ lim =222 (61
20 e e " 2 by )

¥

where

i (k) (er3—essky/py) — f (k) (e —caska/ )

A= -

(62)

The axial displacement on z = 0 is obtained from the first of eqns (52) and eqn (54)
as follows:

[uz]z=0 -

Z Z xZ+1sin (nf). (63)
ne=| j=
Substituting eqn (63) into eqns (61), the stress intensity factors are expressed by

(r. w)3/2 ey

A
K =~ (T - {)3/2 Z( n"- anxz“‘

/ A ]
Ki=—(Ty—To) " —=p Z Zx2’+'
j=

(64)

3.4. Numerical examples
For convenience in numerical calculations, the following dimensionless quantities are
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Table 1. Material constants of transversely isotropic graphite, isotropic graphite, ber-
yllium oxide and zircon (¢, x 10° Pa, o, x 107¢K ")

Materials e Cy9 [ C33 Caq o, o
TG 10.71 1.34 1.50 12,18 4.14 39 3.5
1G 10.71 1.34 1.34 10.71 4.68 3.9 3.9
BO 470 168 119 494 153 2.3 4.4
ZC 258.5 179.1 154.2 380.5 73.3 6.6 7.7
introduced :
, K,.f ah b—'C b - P (Kg',K; )
r'=—, Bi = s y=— H¥=-— (KliaKIo) = : . > (65)
a 4 4 a \fb_carEr(Tb_Tﬁ)

where E,, E, and G,, are the moduli of elasticity, o, and o, are the coefficients of linear
thermal expansion, ¢’ is Fourier’s number, and B, is Biot’s number.

The numerical calculations are carried out for a transversely isotropic graphite (TG),
an isotropic graphite (IG), a beryllium oxide (BO) and a zircon (ZC). Those material
constants are shown in Table 1.

It is necessary to examine the convergences of infinite series involving eqns (60) and
(64). The upper limits of infinite series of £;7_, X% _,, 2%, and X2 , are represented by
M, M’, N and J, where £%_, and X2 _, denote the infinite series of the left- and right-
hand sides of eqns (60), respectively. The stress intensity factors at the inner and outer
crack tips of the TG cylinder are calculated for various upper limit numbers of these infinite
series. The calculated results are shown in Table 2. It is clear from this table that infinite
series converge for M = 8000, M" = 60, N = 5 and J = 4 at a reasonable rate.

Figures 2 and 3 illustrate the time variations of stress intensity factors at the inner and
outer crack tips for various Biot numbers. The solid and broken lines represent the stress
intensity factors calculated for TG and IG. Both stress intensity factors for TG are somewhat
larger than those for IG. The stress intensity factor at the inner crack tip is larger than that
at the outer crack tip. It is seen from these figures that both stress intensity factors have
maximum values with respect to Fourier’s number and increase according to Biot’s number.
The maximum stress intensity factor at the inner crack tip appears later than that at the
outer crack tip, because the distance from the outer surface of the cylinder to the inner
crack tip is longer than that to the outer crack tip. Figures 4 and 5 show the effect of crack
length on the maximum stress intensity factors at the inner and outer crack tips, in which
the maximum stress intensity factor at the outer crack tip for y = 0.7 is calculated from the
case of a penny-shaped crack. Both maximum stress intensity factors increase according to
crack length, and the maximum stress intensity factor at the outer crack tip gets close to
that of penny-shaped crack. Therefore, once the growth of an annular crack begins at the
inner crack tip, that crack extends to the center of the cylinder. Figures 6 and 7 illustrate

Table 2. Effects of upper limit numbers of infinite series on stress intensity factors at inner and outer crack tips
for transversely isotropic graphite (n = 0.7,y = 0.5, B; = 1) (K, K52 x 1077

Fourier’s number ¢
1073 1072 107! 10

Upper limits of series - — - - - - - -
. Kli Klo K!i Kio Kii Kio Kli Kln

e

8000 60 5 4 0.310 0.282 2.905 2.547 9.655 4.124 2.617 0.872
6000 60 5 4 0.310 0.283 2.907 2.550 9.660 4.129 2.618 0.874
10000 60 S 4 0.310 0.282 2.904 2.546 9.652 4.122 2.616 0.872
8000 50 5 4 0.308 0.288 2.904 2.552 9.654 4.129 2.616 0.874
8000 70 5 4 0.309 0.285 2.905 2.549 9.655 4.126 2.616 0.873
8000 60 4 4 0.309 0.283 2.901 2.543 9.639 4.109 2.612 0.868
8000 60 6 4 0310 0.282 2.905 2.547 9.659 4.120 2.617 0.872
8000 60 5 2 0.310 0.283 2.903 2.545 9.650 4.120 2.615 0.872
8000 60 5 6 0.310 0.282 2.905 2.547 9.655 4.124 2.617 0.872
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Fig. 2. Time variations of stress intensity factors at inner crack tip for transversely isotropic graphite
and isotropic graphite.
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Fig. 3. Time variations of stress intensity factors at outer crack tip for transversely isotropic graphite
and isotropic graphite.
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Fig. 4. Relations between maximum stress intensity factor at inner crack tip and Biot’s number for
transversely isotropic graphite and isotropic graphite.

Fig. 5. Relations between maximum stress intensity factor at outer crack tip and Biot’s number for
transversely isotropic graphite and isotropic graphite.
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Fig. 6. Relations between reciprocal of maximum stress intensity factor at inner crack tip and that
of Biot’s number for transversely isotropic graphite and isotropic graphite.
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Fig. 7. Relations between reciprocal of maximum stress intensity factor at outer crack tip and that
of Biot's number for transversely isotropic graphite and isotropic graphite.

how the reciprocals of maximum stress intensity factors at the inner and outer crack tips
depend on the reciprocal of Biot’s number. Next, Figs 8 and 9 illustrate the effects of
anisotropic parameters on the reciprocals of the maximum stress intensity factors at the
inner and outer crack tips. These figures show that both maximum stress intensity factors
are greatly dependent on the anisotropic parameters.

From Figs 6-9, both reciprocals of the maximum stress intensity factors for small Biot
numbers can be expressed by linear functions of the reciprocal of Biot’s number, but those
for larger Biot numbers deviate from the linear functions. Therefore, we propose the

15
” 7=07
H Y =05
V3 16
f§xo
TG
5 B8O
- e
o4 '
00 08 /8, 10

Fig. 8. Differences among maximum stress intensity factors at inner crack tip for transversely
isotropic graphite, isotropic graphite, beryllium oxide and zircon.
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Fig. 9. Differences among maximum stress intensity factors at outer crack tip for transversely
isotropic graphite, isotropic graphite, beryllium oxide and zircon.

following equations :

L d‘+ % +d
= = T T= 3
Kimax B /B, 0.1 < B; <100, 5=0.7). (66)
1 e, e,
= —+—te;

12[0 max B i ﬁ

The coefficients are determined by the method of least squares, and using the technique
once more, the coefficients can be expressed as a function of crack length as follows :

In (d,) = 3.638>—6.095y+ 11
In (dy) = —5.013y2—0.3559+ f
In (d:) = —0.743y? = 1.6507+ fuo |
In (e;) = 0.857y% —2.9299 + g1,
in (e;) = —9.7637>+8.520y+ g0
In(e;y) = 0.70192 —=1.277y+g30

01<y<06, n=0.7), (67)

~

where f;, and g,, are given in Table 3. The calculated values of the coefficients of y% and y
for the four materials are almost the same, so we use the average values of those. As the
accuracy of eqns (66) is important, we examine the relative errors between the maximum
stress intensity factors at the inner and outer crack tips calculated from eqns (64) and those
calculated from eqns (66). The results for TG and IG are shown in Tables 4 and 5. The

Table 3. Calculated values of f;; and g;, (7 = 0.7)

Materials Jo Sro S3o o 920 3o
TG 3.017 0.639 1.186 3.326 —1.036 1.418
1G 3.047 0.678 1.216 3.358 —0.966 1.446
BO 2.724 0.346 0.894 3.033 —1.326 1.125

ZC 1616 —0.762 0215 1.924 —-2433 0016
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Table 4. Relative errors of maximum stress intensity factors at inner and outer
crack tips for transversely isotropic graphite (5 = 0.7)

Ry max (%) Kio max (%0)

B, B,
y 01 1 10 100 01 1 10 100

0.1 49 34 1.0 41 ~19 14 18 -08
02 —-63 -335 -33 0.9 2.5 2.0 0.4 1.9
63 -30 -26 -—34 1.0 2.0 17 0.1 2.8
0.4 35 22 -02 34 16 -—-02 ~15 28
0.5 6.0 5.3 1.8 55 =22 —16 24 2.5
06 —42 27 -39 -—06 1.6 4 —038 2.3

Table 5. Relative errors of maximum stress intensity factors at inner and outer
crack tips for isotropic graphite (g = 0.7)

Kfi max (%} Xfe max (0/0)

¥ 0.1 I 10 100 0.1 1 10 100

0.1 4.9 3.4 1.0 41 -19 —-14 ~18 —0.7

02 —-63 —-35 33 0.9 2.5 1.9 0.3 1.9

03 =30 =26 -34 1.0 2.0 L7 01 28

0.4 35 22 —02 34 —~le —-02 -14 29

0.5 6.0 53 1.8 55 =22 —16 24 2.5
1.4

06 —42 =27 -39 06 1.6 —~0:8 2:3

maximum relative errors of the maximum stress intensity factors at the inner and outer
crack tips for TG are 6.4% and 2.7%, respectively, and those for 1G are 6.4% and 3.7%.
Those for BO are 6.3% and 3.1% and for ZC are 6.5% and 3.3%, respectively. Fairly
accurate values of the maximum stress intensity factors for each material can be simply
calculated from eqns (66). Thus, these approximate equations can give useful engineering
data.
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